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Introduction to ZEISS



ZEISS Microscopy
Portfolio Across Lengthscales
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Al in Microscopy



Al Concepts

ZEISS
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Stages in a Microscopy Workflow
Advanced Reconstruction Toolbox

Sample Preparation Imaging Processing Data Analysis
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Introduction to X-ray CT



Conventional X-ray microCT
The intrinsic conflict is the resolution and the sample size




X-ray Computed Tomography
How this works
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Al for CT Reconstruction



Standard Reconstruction Technologies

Standard Analytical Reconstruction

Currently, XRM uses a standard analytical
reconstruction technology known as Filtered
Back-Projection also called as FDK (Feldkamp) to
compute 3D volumes from the 2D projection
images.

Key Limitations

Large number of projections required to avoid
limited angle artifacts = slower scan times
Long exposure times required to avoid high
noise artifacts = slower scan times

Image Quality

401 projections
(6s exposure)

Reduction in projections or exposure time
(Increase in Throughput)




DeepRecon

Capture Training Dataset <2 hrs Capture Dataset

Raw 2D Projection Data

Recon Volume
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Invensas 2.5D Interposer Package
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Results: 2.5D Interposer Package
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Results: 2.5D Interposer Package
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Results: 2.5D Interposer Package

Standard Reconstruction DeepRecon Pro
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Al for Super-resolution



What is Super-resolution ?
High resolution across large fields of view

Because of the natural trade-off between
resolution and field of view (FoV), high
resolution across large fields of view is a true
challenge for any microscope.
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With DeepScout, it is possible to use
Deeplearning based methods to recover
resolution across large FoV.
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How to improve spatial resolution

Classical: Analytical/Calibration

Point Spread Function

VAN
4

Derive PSF based on
analytical geometry
and/or resolution
phantom calibrations

Low res. image

Restored image

Deconvolution

—

Problems with this approach:

Approximations based on analytical geometry/phantom use
may not fit actual sample and acquisition conditions

Slow

Increases noise

Hard to account for anisotropic effects, scatter, etc.
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Proposed: Machine Learning assisted
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Benefits:

* Tailored to sample class and acquisition conditions

e Easy “calibration”

* Advanced network able to correct for a wide range of
resolution effects without noise trade-off
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Smartphone A12 Control Board
Recovery of Resolution at a Large FOV

Digitally Zoomed-In Large Field of View Image High Resolution Scan
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Smartphone A12 Control Board
Recovery of Resolution at a Large FOV

Al Resolution Recovered High Resolution Scan
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Conclusion



Conclusion

= Al subsets machine learning and deep learning are seen across many aspect of microscopy, from
sample prep to image analysis

= One key area that benefits from deep learning is X-ray CT reconstruction
= Deep Learning can be used to improve both throughput and quality of reconstructed data

= Deep learning can also be used in “super resolution” imaging, significantly reducing time required
for collection of high resolution data

= As long as used sensibly, Al can be a powerful tool in microscopy for improving speed, quality and
automation.
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Seeing beyond
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