The AI Revolution Through the Lens of Microscopy

ZEISS

Veno Naidoo & Andrew Elliott

11 June 2024

ZEINN

Introduction to ZEISS

ZEISS Microscopy Portfolio Across Lengthscales

Al in Microscopy

AI Concepts

Machine Learning	Requirements	Deep Learning
Yes	Training	Yes
Medium	Size of training dataset	Large
Medium	Processing power	High

Stages in a Microscopy Workflow Advanced Reconstruction Toolbox

Sample Preparation

Imaging

Processing

Data Analysis

Introduction to X-ray CT

Conventional X-ray microCT The intrinsic conflict is the resolution and the sample size

X-ray Computed Tomography *How this works*

AI for CT Reconstruction

Standard Analytical Reconstruction

 Currently, XRM uses a standard analytical reconstruction technology known as Filtered Back-Projection also called as FDK (Feldkamp) to compute 3D volumes from the 2D projection images.

Key Limitations

- Large number of projections required to avoid limited angle artifacts → slower scan times
- Long exposure times required to avoid high noise artifacts → slower scan times

Reduction in projections or exposure time (Increase in Throughput)

DeepRecon

ZEINN

Results: 2.5D Interposer Package

Standard Reconstruction

AI for Super-resolution

What is Super-resolution ? High resolution across large fields of view

Because of the natural trade-off between resolution and field of view (FoV), high resolution across large fields of view is a true challenge for any microscope. With DeepScout, it is possible to use DeepLearning based methods to recover resolution across large FoV.

ZEIN

Classical: Analytical/Calibration Input: **Point Spread Function** Derive PSF based on Training analytical geometry and/or resolution phantom calibrations **Output:** Low res. image **Restored** image Inference Deconvolution

Problems with this approach:

- Approximations based on analytical geometry/phantom use may not fit actual sample and acquisition conditions
- Slow
- Increases noise
- Hard to account for anisotropic effects, scatter, etc.

Proposed: Machine Learning assisted

Benefits:

- Tailored to sample class and acquisition conditions
- Easy "calibration"
- Advanced network able to correct for a wide range of resolution effects without noise trade-off

Smartphone A12 Control Board *Recovery of Resolution at a Large FOV*

Digitally Zoomed-In Large Field of View Image

High Resolution Scan

Smartphone A12 Control Board *Recovery of Resolution at a Large FOV*

AI Resolution Recovered

High Resolution Scan

Conclusion

- Al subsets machine learning and deep learning are seen across many aspect of microscopy, from sample prep to image analysis
- One key area that benefits from deep learning is X-ray CT reconstruction
- Deep Learning can be used to improve both throughput and quality of reconstructed data
- Deep learning can also be used in "super resolution" imaging, significantly reducing time required for collection of high resolution data
- As long as used sensibly, AI can be a powerful tool in microscopy for improving speed, quality and automation.

Seeing beyond