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Motivation: A4A scope
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• Analogue and digital electronics are becoming more intertwined

• Analogue domain becomes more complex and itself needs

digital control



Motivation: Power electronics context

3 / 31

• Efficient implementation of power converters is paramount

• Extending the battery life of mobile gadgets
• Reducing the energy bill for PCs and data centres

(5% and 3% of global electricity production respectively)

• Need for responsive and reliable control circuitry - little digital

• Millions of control decisions per second for years

• An incorrect decision may permanently damage the circuit

• Poor EDA support

• Synthesis is optimised for data processing - big digital

• Ad hoc solutions are prone to errors and cannot be verified



Basic buck converter: Schematic
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• In the textbook buck a diode is used instead of NMOS transistor



Basic buck converter: Informal specification
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• no ZC – under-voltage without zero-crossing

• late ZC – under-voltage before zero-crossing

• early ZC – under-voltage after zero-crossing



Multiphase buck converter: Schematic
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Multiphase buck converter: Informal specification
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• Normal mode

• Phases are activated sequentially

• Phases may overlap

• High-load mode

• All phases are activated simultaneously

• Benefits

• Faster reaction to the power demand

• Heat dissipation from a larger area

• Decreased ripple of the output voltage

• Smaller transistors and coils



Synchronous design
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• Two clocks: phase activation (~5MHz) and sampling (~100MHz)

Easy to design (RTL synthesis flow)

Response time is of the order of clock period

Power consumed even when idle

Non-negligible probability of a synchronisation failure

• Manual ad hoc design to alleviate the disadvantages

Verification by exhaustive simulation



Asynchronous design
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• Event-driven control decisions

Prompt response (a delay of few gates)

No dynamic power consumption when the buck is inactive

Other well known advantages

Insufficient methodology and tool support

• Our goals

• Formal specification of power control behaviour
• Reuse of existing synthesis methods
• Formal verification of the obtained circuits
• Demonstrate new advantages for power regulation

(power efficiency, smaller coils, ripple and transient response)



High-level architecture: Token ring

10 / 31

• No need for phase activation clock



High-level architecture: Charging stage
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A2A components
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• Interface analogue world of “dirty” signals

• Provide hazard-free “sanitised” digital signals for asynchronous control

• Library of A2A components

• WAIT / WAIT0 – wait for stable 1 / 0 on analogue input and

latch it until explicit release signal

• RWAIT / RWAIT0 – WAIT element with a possibility to

persistently cancel the waiting request

• WAIT01 / WAIT10 – wait for a rising / falling edge

• WAITX / WAITX2 – wait for one of analogue signals

in a mutually exclusive way using

4-phase / 2-phase control signalling

• SAMPLE – sample the state of analogue signal



A2A components: WAIT element
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• STG specification
Read-consume conflict 

between output and input.

• ME-based solution • Gate-level implementation

can be removed



Synthesis flow
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• Manual decomposition of the system into modules

• To create formal specification from informal requirements
(feedback loop with engineers)

• To simplify specification and synthesis

• Some modules are reusable

• Some modules (A2A components, Opportunistic Merge)

are potential standard components

• Each component is specified using STGs

• Automatic synthesis into speed-independent circuits

(arbitrary gate delays and some forks must be isochronic)



Formal verification
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• STG verification

• All standard speed-independence properties

(consistency, output-persistency, complete state coding)

• PMOS and NMOS are never ON simultaneously

(to prevent from short circuit)

• Some timers are used in a mutually exclusive

way and can be shared

• Circuit verification

• Conforms to the environment

• Deadlock-free and hazard-free under the given environment



Tool support: WORKCRAFT
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• Framework for interpreted graph models (STGs, circuits, FSMs,

dataflow structures, etc.)

• Interoperability between models

• Elaborated GUI

• Includes many backend tools

• PETRIFY – STG and circuit synthesis, BDD-based

• PUNF – STG unfolder

• MPSAT – unfolding-based verification and synthesis

• PCOMP – parallel composition of STGs



Tool support: WORKCRAFT
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Simulation results
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• Verilog-A model of the 3-phase buck

• Control implemented in TSMC 90nm

• AMS simulation in CADENCE NC-VERILOG

• Synchronous design

• Phase activation clock – 5 MHz

• Clocked FSM-based control – 100 MHz

• Sampling and synchronisation

• Asynchronous design

• Phase activation - token ring with 200 ns timer (= 5 MHz)

• Event-driven control (input-output mode)

• Waiting rather than sampling (A2A components)



Simulation results
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AMS Trends & Challenges
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• Key drivers

• Internet of Things

• Mobile computing

• Automotive electronics

• Trends

• Technology scaling

• Multiple power and time domains

• Analog and digital integration

• Challenges

• Tighter reliability margins

• Concurrent analog and digital analysis

• Short development cycle

Based on slide from DAC-2014 by ANSYS



What this means for AMS?
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• Achieving better verification of analog and digital blocks

• Verifying the increasing amount of digital logic in

analog designs

• Creating a higher level of abstraction for analog and

mixed signal blocks

• Automating the manual custom design steps

• Adopting circuit analytics that tell why and where the

circuit is failing to perform

Based on slide from ISQED-2013 by Mentor Graphics



Advanced AMS design flow
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AMS flow: Tool support
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• WORKCRAFT – synthesis and verification of async. circuits

• LEMA – modelling and verification of AMS circuits

• Model generation from simulation traces
• Property expression and checking



AMS flow: Basic buck
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AMS flow: Model generation example
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AMS flow: Optimised specification
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• Concurrency reduction

• Scenario elimination



ADC: Sampling schemes
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• Synchronous

ADC

Ts

• Asynchronous

AADC

A. Ogweno, P. Degenaar, V. Khomenko and A. Yakovlev: “A fixed window level crossing ADC with
activity dependent power dissipation” , accepted for NEWCAS-2016.



ADC: Asynchronous design
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ADC: Specification and implementation
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• STG specification • Speed-independent implementation
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Conclusions
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• Fully asynchronous design of multiphase buck controller

• Quick response time: few gate delays, all mutexes are

outside the critical path

• Reliable: no synchronisation failures

• Design flow is automated to large extent

• Automatic logic synthesis

• Formal verification at the STG and circuit levels

• Library of A2A components

• Vision for an advanced AMS design flow
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