Asynchronous Design for Analogue Electronics

Alex Yakovlev

Motivation: A4A scope

- Analogue and digital electronics are becoming more intertwined
- Analogue domain becomes more complex and itself needs digital control

Motivation: Power electronics context

- Efficient implementation of power converters is paramount
 - Extending the battery life of mobile gadgets
 - Reducing the energy bill for PCs and data centres (5% and 3% of global electricity production respectively)
- Need for responsive and reliable control circuitry *little digital*
 - Millions of control decisions per second for years
 - An incorrect decision may permanently damage the circuit
- Poor EDA support
 - Synthesis is optimised for data processing *big digital*
 - Ad hoc solutions are prone to errors and cannot be verified

Basic buck converter: Schematic

• In the textbook buck a diode is used instead of NMOS transistor

Basic buck converter: Informal specification

- no ZC under-voltage without zero-crossing
- late ZC under-voltage before zero-crossing
- early ZC under-voltage after zero-crossing

Multiphase buck converter: Schematic

Multiphase buck converter: Informal specification

- Normal mode
 - Phases are activated sequentially
 - Phases may overlap
- High-load mode
 - All phases are activated simultaneously
- Benefits
 - Faster reaction to the power demand
 - Heat dissipation from a larger area
 - Decreased ripple of the output voltage
 - Smaller transistors and coils

Synchronous design

- Two clocks: phase activation (~5MHz) and sampling (~100MHz)
 - © Easy to design (RTL synthesis flow)
 - 8 Response time is of the order of clock period
 - Power consumed even when idle
 - ^(C) Non-negligible probability of a synchronisation failure
- Manual ad hoc design to alleviate the disadvantages
 Ø Verification by exhaustive simulation

Asynchronous design

- Event-driven control decisions
 - Prompt response (a delay of few gates)
 - ☺ No dynamic power consumption when the buck is inactive
 - Other well known advantages
 - Insufficient methodology and tool support
- Our goals
 - Formal specification of power control behaviour
 - Reuse of existing synthesis methods
 - Formal verification of the obtained circuits
 - Demonstrate new advantages for power regulation (power efficiency, smaller coils, ripple and transient response)

High-level architecture: Token ring

• No need for phase activation clock

High-level architecture: Charging stage

A2A components

- Interface analogue world of "dirty" signals
- Provide hazard-free "sanitised" digital signals for asynchronous control
- Library of A2A components
 - WAIT / WAIT0 wait for stable 1 / 0 on analogue input and latch it until explicit release signal
 - RWAIT / RWAIT0 WAIT element with a possibility to persistently cancel the waiting request
 - WAIT01 / WAIT10 wait for a rising / falling edge
 - WAITX / WAITX2 wait for one of analogue signals

in a mutually exclusive way using 4-phase / 2-phase control signalling

- SAMPLE
- sample the state of analogue signal

A2A components: WAIT element

• STG specification

• ME-based solution

Gate-level implementation

Synthesis flow

- Manual decomposition of the system into modules
 - To create formal specification from informal requirements (feedback loop with engineers)
 - To simplify specification and synthesis
 - Some modules are reusable
 - Some modules (A2A components, Opportunistic Merge) are potential standard components
- Each component is specified using STGs
- Automatic synthesis into speed-independent circuits (arbitrary gate delays and some forks must be isochronic)

- STG verification
 - All standard speed-independence properties (consistency, output-persistency, complete state coding)
 - PMOS and NMOS are never ON simultaneously (to prevent from short circuit)
 - Some timers are used in a mutually exclusive way and can be shared
- Circuit verification
 - Conforms to the environment
 - Deadlock-free and hazard-free under the given environment

Tool support: WORKCRAFT

- Framework for *interpreted graph models* (STGs, circuits, FSMs, dataflow structures, etc.)
 - Interoperability between models
 - Elaborated GUI
- Includes many backend tools
 - PETRIFY STG and circuit synthesis, BDD-based
 - PUNF STG unfolder
 - MPSAT unfolding-based verification and synthesis
 - PCOMP parallel composition of STGs

Tool support: WORKCRAFT

😳 🖨 🐵 Workcraft

File Edit View Tools Help

Simulation results

- Verilog-A model of the 3-phase buck
- Control implemented in TSMC 90nm
- AMS simulation in CADENCE NC-VERILOG
- Synchronous design
 - Phase activation clock 5 MHz
 - Clocked FSM-based control 100 MHz
 - Sampling and synchronisation
- Asynchronous design
 - Phase activation token ring with 200 ns timer (= 5 MHz)
 - Event-driven control (input-output mode)
 - Waiting rather than sampling (A2A components)

Simulation results

synchronous

asynchronous

AMS Trends & Challenges

- Key drivers
 - Internet of Things
 - Mobile computing
 - Automotive electronics
- Trends
 - Technology scaling
 - Multiple power and time domains
 - Analog and digital integration
- Challenges
 - Tighter reliability margins
 - Concurrent analog and digital analysis
 - Short development cycle

What this means for AMS?

- Achieving better verification of **analog and digital blocks**
- Verifying the increasing amount of digital logic in analog designs
- Creating a higher level of abstraction for analog and mixed signal blocks
- **Automating** the manual custom design steps
- Adopting circuit analytics that tell why and where the circuit is failing to perform

Advanced AMS design flow

AMS flow: Tool support

- WORKCRAFT synthesis and verification of async. circuits
- LEMA modelling and verification of AMS circuits
 - Model generation from simulation traces
 - Property expression and checking

AMS flow: Basic buck

AMS flow: Model generation example

AMS flow: Optimised specification

• Concurrency reduction

• Scenario elimination

ADC: Sampling schemes

• Synchronous

Asynchronous

A. Ogweno, P. Degenaar, V. Khomenko and A. Yakovlev: "A fixed window level crossing ADC with activity dependent power dissipation", accepted for NEWCAS-2016.

ADC: Asynchronous design

ADC: Specification and implementation

STG specification
 Speed-independent implementation

Conclusions

- Fully asynchronous design of multiphase buck controller
 - Quick response time: few gate delays, all mutexes are outside the critical path
 - Reliable: no synchronisation failures
- Design flow is automated to large extent
 - Automatic logic synthesis
 - Formal verification at the STG and circuit levels
 - Library of A2A components
- Vision for an advanced AMS design flow

Acknowledgements

- A4A team
 - Newcastle University: Vladimir Dubikhin, Victor Khomenko,
 Andrey Mokhov, Danil Sokolov, Prof. Alex Yakovlev
 - Dialog Semiconductor: David Lloyd
 - University of Utah: Prof. Chris Myers
- EPSRC for funding A4A project (EP/L025507/1)
- Design automation
 - WORKCRAFT *http://workcraft.org/*
 - LEMA http://www.async.ece.utah.edu/LEMA
- Recent publications
 - D. Lloyd, R. Illman: "Scan insertion and ATPG for C-gate based asynchronous designs", SNUG- 2014.
 - D. Sokolov, et. al: "Design and verification of speed-independent buck controller", ASYNC-2015.
 - V. Dubikhin, et. al: *"Design of mixed-signal systems with asynchronous control"*, IEEE Design & Test (to appear).