Analogue and digital electronics are becoming more intertwined
Analogue domain becomes more complex and itself needs digital control
Motivation: Power electronics context

- Efficient implementation of power converters is paramount
 - Extending the battery life of mobile gadgets
 - Reducing the energy bill for PCs and data centres (5% and 3% of global electricity production respectively)
- Need for responsive and reliable control circuitry - *little digital*
 - Millions of control decisions per second for years
 - An incorrect decision may permanently damage the circuit
- Poor EDA support
 - Synthesis is optimised for data processing - *big digital*
 - *Ad hoc* solutions are prone to errors and cannot be verified
In the textbook buck a diode is used instead of NMOS transistor
Basic buck converter: Informal specification

- **no ZC** – under-voltage without zero-crossing
- **late ZC** – under-voltage before zero-crossing
- **early ZC** – under-voltage after zero-crossing
Multiphase buck converter: Informal specification

- Normal mode
 - Phases are activated sequentially
 - Phases may overlap

- High-load mode
 - All phases are activated simultaneously

- Benefits
 - Faster reaction to the power demand
 - Heat dissipation from a larger area
 - Decreased ripple of the output voltage
 - Smaller transistors and coils
Synchronous design

- Two clocks: phase activation (~5MHz) and sampling (~100MHz)
 - Easy to design (RTL synthesis flow)
 - Response time is of the order of clock period
 - Power consumed even when idle
 - Non-negligible probability of a synchronisation failure

- Manual ad hoc design to alleviate the disadvantages
 - Verification by exhaustive simulation
Asynchronous design

- Event-driven control decisions
 - 🌅 Prompt response (a delay of few gates)
 - ☀️ No dynamic power consumption when the buck is inactive
 - 😞 Other well known advantages
 - 🤷‍♂️ Insufficient methodology and tool support

- Our goals
 - Formal specification of power control behaviour
 - Reuse of existing synthesis methods
 - Formal verification of the obtained circuits
 - Demonstrate new advantages for power regulation (power efficiency, smaller coils, ripple and transient response)
No need for phase activation clock
A2A components

- Interface analogue world of “dirty” signals
- Provide hazard-free “sanitised” digital signals for asynchronous control

Library of A2A components

- **WAIT / WAIT0** – wait for stable 1 / 0 on analogue input and latch it until explicit release signal
- **RWAIT / RWAIT0** – WAIT element with a possibility to persistently cancel the waiting request
- **WAIT01 / WAIT10** – wait for a rising / falling edge
- **WAITX / WAITX2** – wait for one of analogue signals in a mutually exclusive way using 4-phase / 2-phase control signalling
- **SAMPLE** – sample the state of analogue signal
A2A components: WAIT element

- STG specification

Read-consume conflict between output and input.

- ME-based solution

- Gate-level implementation

sig+ \rightarrow san+ \rightarrow ctrl-
sig- \rightarrow ctrl+ \rightarrow san-

sig0 \rightarrow sig1

r1 \rightarrow g1

r2 \rightarrow g2

ME

can be removed
Synthesis flow

- Manual decomposition of the system into modules
 - To create formal specification from informal requirements (feedback loop with engineers)
 - To simplify specification and synthesis
 - Some modules are reusable
 - Some modules (A2A components, Opportunistic Merge) are potential standard components

- Each component is specified using STGs
- Automatic synthesis into speed-independent circuits (arbitrary gate delays and some forks must be isochronic)
Formal verification

- STG verification
 - All standard speed-independence properties (consistency, output-persistency, complete state coding)
 - PMOS and NMOS are never ON simultaneously (to prevent from short circuit)
 - Some timers are used in a mutually exclusive way and can be shared

- Circuit verification
 - Conforms to the environment
 - Deadlock-free and hazard-free under the given environment
Tool support: WORKCRAFT

- Framework for *interpreted graph models* (STGs, circuits, FSMs, dataflow structures, etc.)
 - Interoperability between models
 - Elaborated GUI

- Includes many backend tools
 - PETRIFY – STG and circuit synthesis, BDD-based
 - PUNF – STG unfolder
 - MPSAT – unfolding-based verification and synthesis
 - PCOMP – parallel composition of STGs
Tool support: WORKCRAFT

Message:
Under the given environment (stg-ZCH.work) the circuit is:
- conformant
- deadlock-free
- hazard-free
Simulation results

- Verilog-A model of the 3-phase buck
- Control implemented in TSMC 90nm
- AMS simulation in CADENCE NC-VERILOG
- Synchronous design
 - Phase activation clock – 5 MHz
 - Clocked FSM-based control – 100 MHz
 - Sampling and synchronisation

- Asynchronous design
 - Phase activation - token ring with 200 ns timer (= 5 MHz)
 - Event-driven control (input-output mode)
 - Waiting rather than sampling (A2A components)
AMS Trends & Challenges

- **Key drivers**
 - Internet of Things
 - Mobile computing
 - Automotive electronics

- **Trends**
 - Technology scaling
 - Multiple power and time domains
 - Analog and digital integration

- **Challenges**
 - Tighter reliability margins
 - Concurrent analog and digital analysis
 - Short development cycle

Based on slide from DAC-2014 by ANSYS
What this means for AMS?

- Achieving better verification of analog and digital blocks
- Verifying the increasing amount of digital logic in analog designs
- Creating a higher level of abstraction for analog and mixed signal blocks
- Automating the manual custom design steps
- Adopting circuit analytics that tell why and where the circuit is failing to perform

Based on slide from ISQED-2013 by Mentor Graphics
AMS flow: Tool support

- **WORKCRAFT** – synthesis and verification of async. circuits
- **LEMA** – modelling and verification of AMS circuits
 - Model generation from simulation traces
 - Property expression and checking
AMS flow: Basic buck

- over-current (oc)
- under-voltage (uv)
- I_{max}
- control
 - gp_ack
 - gp
 - oc
 - uv
 - gn_ack
 - gn
- buck
 - PMOS
 - NMOS
- R_{load}
- V_{ref}

Events:
- gp_ack
- oc
- uv
- gn_ack
- gn
- over-current (oc)
- under-voltage (uv)

Nodes:
- gp_ack+
- gp_ack-
- gp+
- gp-
- oc+
- oc-
- uv+
- uv-
- gn+
- gn-
- gn_ack+
- gn_ack-
- p0
- p1
- p2
- p3
- p4
- p5
AMS flow: Model generation example

Initial conditions:
- gp_ack = false
- gp = false
- gp_gate = 10000
- gp_gate_rate = 0
AMS flow: Optimised specification

- Concurrency reduction

- Scenario elimination
ADC: Sampling schemes

- Synchronous

- Asynchronous

ADC: Asynchronous design

![Diagram of Asynchronous Design]

- **Slope Detector**
- **Ramp Gen**
- **Comp**
- **Async controller**
- **Time to Digital Converter**

Waveforms:
- V_{in}
- V_{ramp}
- V_{change}
- V_{pulse}

Timings:
- t_1
- t_2
- t_3
- t_4
- t_5
- t_6

Terms:
- rise
- fall
- $refp$
- $refm$
- $refn$
ADC: Specification and implementation

- STG specification
- Speed-independent implementation
Conclusions

- Fully asynchronous design of multiphase buck controller
 - Quick response time: few gate delays, all mutexes are outside the critical path
 - Reliable: no synchronisation failures

- Design flow is automated to large extent
 - Automatic logic synthesis
 - Formal verification at the STG and circuit levels
 - Library of A2A components

- Vision for an advanced AMS design flow
Acknowledgements

- A4A team
 - Newcastle University: Vladimir Dubikhin, Victor Khomenko, Andrey Mokhov, Danil Sokolov, Prof. Alex Yakovlev
 - Dialog Semiconductor: David Lloyd
 - University of Utah: Prof. Chris Myers

- EPSRC for funding A4A project (EP/L025507/1)
- Design automation
 - WORKCRAFT – http://workcraft.org/
 - LEMA – http://www.async.ece.utah.edu/LEMA

- Recent publications
 - D. Lloyd, R. Illman: “Scan insertion and ATPG for C-gate based asynchronous designs”, SNUG- 2014.