
Copyright © 2008-2009 by Doulos. All rights reserved.

National Microelectronics Institute

ESL and the OSCI TLM-2.0

Standard

John Aynsley, CTO, Doulos

“Electronic System Level Design

– three years on”

ESL and the OSCI TLM-2.0
Standard

CONTENTS

• ESL

• SystemC and Transaction Level Modeling

• OSCI TLM-2.0

Copyright © 2008-2009 by Doulos. All rights reserved.

Copyright © 2008-2009 by Doulos. All rights reserved.

So What is ESL?

• ESL = Electronic System Level

• Draws on the comparison with RTL –

simulation, synthesis, formal verification,

timing analysis, power analysis, ...

• ESL = above RTL

but ESL ≠ well-defined abstraction level

3

Copyright © 2008-2009 by Doulos. All rights reserved.

Under the ESL Umbrella

4

• Architectural exploration

• ESL Performance analysis

• ESL Power analysis

• Hardware-software co-design

• Virtual platform modeling

• ESL Synthesis

• Sequential logic equivalence checking

• Transaction-based acceleration

• and so on ...

Copyright © 2008-2009 by Doulos. All rights reserved.

The Question Is ...

• Will any two given ESL tools play together?

• Things are getting better, due in part to standards:

IP-XACT, SCE-MI, SystemC and TLM-2.0 ...

5

ESL and the OSCI TLM-2.0
Standard

CONTENTS

• ESL

• SystemC and Transaction Level Modeling

• OSCI TLM-2.0

Copyright © 2008-2009 by Doulos. All rights reserved.

Copyright © 2008-2009 by Doulos. All rights reserved.

What is SystemC?

• System-level modeling language

• Network of communicating processes (c.f. HDL)

• Modeling hardware and software together

• New: SystemC-AMS (mixed signal)

• C++ class library

• Industry standard IEEE 1666™

• Owned and driven by OSCI (Open SystemC Initiative)

• Open source implementation

• Mature, robust, easy-to-integrate and “free”

Communicating
processes

7

Copyright © 2008-2009 by Doulos. All rights reserved.

ModuleModule

Features of SystemC

• Modules (structure)

• Ports (structure)

• Processes (computation, concurrency)

• Channels (communication)

• Interfaces (communication refinement, OOP)

• Events (time, scheduling, synchronisation)

• Data types (hardware, fixed point)

ModuleModule

ChannelChannel

PortPort InterfaceInterface

ProcessProcess ProcessProcess

C++ classesC++ classes

8

Copyright © 2008-2009 by Doulos. All rights reserved.

Transaction Level Modeling

RTLRTL

Pin AccuratePin Accurate

Simulate every event!

RTLRTL

Functional

Model

Functional

Model

Functional

Model

Functional

Model

100-10,000 X faster simulation!

Function CallFunction Call

write(address,data)write(address,data)

9

Copyright © 2008-2009 by Doulos. All rights reserved.

Reasons for using TLM

Software developmentSoftware developmentFirmware /
software

Firmware /
software

Accelerates product release schedule

Test benchTest bench

Hardware verificationHardware verification

RTLRTL

TLM = golden model

Architectural explorationArchitectural explorationTLMTLM

Fast

Ready before RTL

10

Copyright © 2008-2009 by Doulos. All rights reserved.

Typical Use Case: Virtual Platform

CPU CPU ROMROM DMADMARAMRAM

Interrupt Interrupt TimerTimer BridgeBridge

BridgeBridge

DSP DSP ROMROM RAMRAM

A/DA/DInterrupt Interrupt TimerTimerI/OI/O

Memory

interface

Memory

interface
I/OI/O DMADMARAMRAM

Custom

peripheral

Custom

peripheral

SoftwareSoftware

D/AD/A

SoftwareSoftware

Multiple software stacksMultiple software stacks

Digital and analog hardware IP blocksDigital and analog hardware IP blocks

Multiple buses and bridgesMultiple buses and bridges

TLM-2.0TLM-2.0

11

Copyright © 2008-2009 by Doulos. All rights reserved.

Virtual Platform Characteristics

Instruction Set

Simulator or software
stubs

Transaction-Level Model RTL

Available early Available early Much later

Fast enough to run
applications

Fast enough to run
applications

Too slow to run
applications

Little or no hardware

detail

Register-accurate Register-accurate and

pin-accurate

No timing information Some timing information Cycle-accurate timing

� � �

� � �

��

� �

�

�

12

Copyright © 2008-2009 by Doulos. All rights reserved.

Transaction-Level Modeling

Communication
Wrapper

Communication
Wrapper

Behavioral
Model

Behavioral
Model

Communication
Wrapper

Communication
Wrapper

Behavioral
Model

Behavioral
Model

Simple functional models, e.g. C programs

Could be synthesized by an ESL synthesis tool ?

Transaction

+ timing

Concurrent simulation environment

13

Copyright © 2008-2009 by Doulos. All rights reserved.

TLM and Synthesis

14

C/C++
Algorithm

C/C++
Algorithm

ESL SynthesisESL Synthesis

RTLRTL

Compare

SystemC WrapperSystemC Wrapper

C/C++
Algorithm

C/C++
Algorithm

ESL SynthesisESL Synthesis

RTLRTL

Compare

Copyright © 2008-2009 by Doulos. All rights reserved.

Use Model: SystemC as Glue!

SystemC
Wrapper

SystemC
Wrapper

VHDL

Verilog

VHDL

Verilog

SystemC
Wrapper

SystemC
Wrapper

C/C++C/C++

• Transaction-level modeling is communication-centric

Native
SystemC

H/W IP

Native
SystemC

H/W IP

SystemC
Wrapper

SystemC
Wrapper

ISSISS

15

Transaction-level communication, e.g. bus model

Object
code

Object
code

ESL and the OSCI TLM-2.0
Standard

CONTENTS

• ESL

• SystemC and Transaction Level Modeling

• OSCI TLM-2.0

Copyright © 2008-2009 by Doulos. All rights reserved.

Copyright © 2008-2009 by Doulos. All rights reserved.

OSCI TLM Timeline

17

Copyright © 2008-2009 by Doulos. All rights reserved.

OSCI TLM-2.0 Standard

18

• Transaction-level modeling, primarily of memory-mapped busses

between TLM models of IP blocks

comparable to ISS

Copyright © 2008-2009 by Doulos. All rights reserved.

Multiple Use Cases

• Can mix-and-match

FUNCTIONAL VIEWFUNCTIONAL VIEW

Algorithm developer

PROGRAMMERS VIEWPROGRAMMERS VIEW

Software developer

ARCHITECTURE VIEWARCHITECTURE VIEW

Tuning the platform

VERIFICATION VIEWVERIFICATION VIEW

Functional verification

RTLRTL Implementation

UntimedUntimed

Approximately-timedApproximately-timed Loosely-timedLoosely-timed

Untimed through Cycle AccurateUntimed through Cycle Accurate

19

Copyright © 2008-2009 by Doulos. All rights reserved.

Coding Styles and Mechanisms

Blocking
transport

Blocking
transport

Non-blocking
transport

Non-blocking
transportDMIDMI SocketsSocketsQuantum Quantum Generic

payload

Generic
payload

Mechanisms (definitive API for TLM-2.0 enabling interoperability)

Use cases

Software
development

Software
development

Architectural
analysis

Architectural
analysis

Hardware
verification

Hardware
verification

Software
performance

Software
performance

Loosely-timedLoosely-timed

Approximately-timedApproximately-timed

TLM-2 Coding styles (just guidelines)

PhasesPhases

20

Copyright © 2008-2009 by Doulos. All rights reserved.

Coding Styles

• Loosely-timed = as fast as possible

• Only sufficient timing detail to boot O/S and run multi-core systems

• Processes can run ahead of simulation time (temporal decoupling)

• Each transaction completes in one function call

• Uses direct memory interface (DMI)

• Approximately-timed = just accurate enough for performance modeling

• aka cycle-approximate or cycle-count-accurate

• Sufficient for architectural exploration

• Processes run in lock-step with simulation time

• Each transaction has 4 timing points (extensible)

• Guidelines only – not definitive

21

Copyright © 2008-2009 by Doulos. All rights reserved.

Interoperability layer for bus modeling

The TLM 2.0 Classes

IEEE 1666™ SystemC

TLM-1 standard TLM-2 core interfaces:

Blocking transport interface

Non-blocking transport interface

Direct memory interface

Debug transport interface
Analysis interface

Initiator and target sockets

Analysis ports

Generic payload Phases

Utilities:
Convenience sockets
Payload event queues
Quantum keeper
Instance-specific extn

22

Copyright © 2008-2009 by Doulos. All rights reserved.

Interoperability Layer

TargetTargetInitiatorInitiator

1. Core interfaces and
sockets

2. Generic payload

Command

Address

Data

Byte enables

Response status

Extensions

3. Base protocol

BEGIN_REQ

END_REQ

BEGIN_RESP

END_RESP

• Maximal interoperability for memory-mapped bus models

23

Copyright © 2008-2009 by Doulos. All rights reserved.

Utilities

• Productivity

• Shortened learning curve

• Consistent coding style

Core interfaces

Sockets

Generic payload

Base protocol

Core interfaces

Sockets

Generic payload

Base protocol

InitiatorInitiator

Interoperability
layer

TargetTarget

Coding Style

Loosely- or Approximately-timed

Utilities

Convenience sockets

Quantum keeper (LT)

Payload event queues (AT)

Instance-specific extensions (GP)

Coding Style

Loosely- or Approximately-timed

Utilities

Convenience sockets

Quantum keeper (LT)

Payload event queues (AT)

Instance-specific extensions (GP)

24

Copyright © 2008-2009 by Doulos. All rights reserved.

InitiatorInitiator InterconnectInterconnect TargetTarget

Kinds of Interoperability

25

• Base protocol, generic payload + ignorable extensions

• Functional incompatibilities still possible

• New protocol, generic payload + extensions

• Cannot bind sockets of differing protocols

• Generic payload and base protocol still exploited for consistency of coding style

• Generic payload extension mechanism exploited for ease-of-adaption

TargetTargetAdapterAdapterInitiatorInitiator

Copyright © 2008-2009 by Doulos. All rights reserved.

Levels of Use

26

1. Buy models with the TLM-2.0 sticker

2. Write LT components

Beware: requires more expertise...

3. Write AT components

4. Support LT/AT switching

Copyright © 2008-2009 by Doulos. All rights reserved.

For More FREE Information

27

standards.ieee.org/getieee/1666/index.html

www.systemc.org

• IEEE 1666

• OSCI SystemC 2.2 and TLM-2.0

www.doulos.com/knowhow/systemc/tlm2

• Tutorial introduction to TLM-2.0 and Free TLM-2.0 Protocol Checker

and examples

and videos

Copyright © 2008-2009 by Doulos. All rights reserved.

