
ESL in the Future:
The Impact of Open Source

Jeremy Bennett, Chief Executive, Embecosm
jeremy.bennett@embecosm.com

Draft of 21 Sep 09

Introduction

You will notice I am not using any PowerPoint slides. Well I want to tell you a story,
and for a story, words are better than pictures.

My story is about why SystemC was an important turning point for the EDA
industry. Not for its technology, but because of the way that technology was made
available. It was the first major standardization effort in EDA to make an open
source implementation central to its work. The successes and failures of SystemC
can tell us a lot about where EDA might go in the future and how we should
prepare for that future.

But before I tell you that story, we need to understand some history, some law and
some commercial realities.

Hacker Culture

The modern free and open source software movement, often known by its acronym,
FOSS, can trace its origins back to model railway engineering. The MIT Tech Model
Railroad Club, founded just after the second world war, specialized in automation of
their layout. When an IBM 704 computer was installed on campus in 1959, a group
of friends from the model railroad club would sneak inside the computer room after
hours to attempt to program the machine.

In US slang, the term “hack” means a student prank, and these early unofficial
programmers became known as “hackers”. Their work was characterized by
informality and openness, with an emphasis on exploration and stretching the
programmer's abilities. While MIT may have been first, students at Universities with
early access to computers, were quick to join in the fun.

The GNU Manifesto

By the end of the 1970s, the world of software was changing. Computers, if not yet
personal, had become mainstream. There were well paid jobs to develop challenging
software and explore the limits of computer engineering. You didn't have to do it as
a hobby in your spare time.

But the hacker culture was not dead. In 1983, a young MIT programmer, Richard
Stallman, published his “GNU Manifesto”. What is GNU? Gnu's Not Unix. A self
referential acronym capturing the goal of a collaborative project to develop a free
replacement for Unix. Coinciding with the early days of what we now call the
Internet, the project grew rapidly. In 1985, Stallman set up the Free Software
Foundation, a non-profit foundation to support the work of GNU and free software

Registered In England and Wales. Page 1 of 9
Registered Number: 6577021

in general. By 1991, with incorporation of the Linux kernel, the goal of a free
replacement for Unix had been achieved.

What Does “Free” Mean?

The GNU Manifesto talked sloppily of providing “free” software. However the word
“free” has two distinct meanings. It can mean that something does not have to be
paid for as in “Jeremy can I get you a free beer after your talk”. However it can also
mean free in the sense of “freedom”.

It is this latter sense of “freedom” which was intended in the GNU Manifesto. That
the user should be free to do what they wish with the software. It does not mean
that you are not allowed to make money from the software.

With this in mind, two of the engineers behind Netscape, Bruce Perens and Eric
Raymond set up the Open Software Initiative in 1998 to help market the concept of
free software. The OSI advocated the use of the term “open source software” as less
frightening to the business community, a term which has now become generally
adopted.

The Open Source Definition

The Open Software Initiative is based around a set of criteria, know as the Open
Source Definition. There are 10 criteria in all, but they can be summarized into just
three principles.

 1. The most important is the principle of free distribution. There must be no
restriction on any party giving away the software freely, either standalone or
as part of another program.

 2. Closely allied to this is the right of access to the source code, and this is
important because it allows anyone to make what are known as “derivative
works”. These may be bug patches, or they may be completely new programs,
but they are central to the true value of open source software.

 3. Finally there is the principle of non-discrimination. By this is meant
discrimination against who may use the software, discrimination against the
technology on which this software may run, discrimination against what the
software can be used for, and discrimination over whether you can use the
software commercially.

Legal Frameworks

A common misconception is that open source software has no license or is in the
“public domain”. Nothing could be further from the truth. Open source software
relies on copyright law and licensing to enforce its requirements for openness.

Copyright law has the merit of being largely the same around the world. It is
usually free, and in most countries automatically granted to an author. Most
importantly the courts have for many years held that software is a creative act
covered by copyright law. Open source software works by granting the user a
license to the copyrighted software, in exchange for which the user must follow the
rules of open source software.

And those licenses do get enforced. The courts may impose punitive damages,
payable to the copyright owner, and they may order a violating product to be

Registered In England and Wales. Page 2 of 9
Registered Number: 6577021

withdrawn. So the clear message is: if you use open source software, follow the
rules.

Type of Open Source License

Open source licenses can be grouped into two broad categories. The first group are
known as “viral” licenses. These licenses grant you a right to use the software with
its source and modify it, so long as you pass those same license rights on with any
software you derive from the original. Most importantly if you incorporate the open
source software into a larger program, then that is what is known as a derivative
work, and the license applies to the whole program, not just the original open
source software. In this sense the license infects any software of which it becomes
part, hence the name.

The second broad category are the “non-viral” licenses. These are not so restrictive.
They may require you to pass on the rights to the software, but only to the part of
the program that was originally open source. Some are even less restrictive, and
amount to little more than “do what you like, just so long as you never sue me”.

By far the commonest open source license is the GNU General Public License, or
GPL. Now on its 3rd version, this is used by around two thirds of all open source
projects. It is a truly viral license, and over the past 25 years, a great deal of legal
effort has gone into defining what is a derivative work and hence would be covered
by the GPL.

The majority of other licenses are non-viral. They range from the GNU Lesser
General Public License, which imposes strict obligations on distributing
modifications to the original code, through to the MIT and BSD licenses which come
into the “do what you like, just so long as you never sue me” category. Two large
programs covered by this sort of license are the Apache web server and the Eclipse
IDE, both allowing proprietary developments from their code base.

Business Models

Today IBM, holder of the world's largest patent portfolio, make more money from
open source software than they do from patents. Red Hat have a turnover of three
billion dollars. MySQL was sold for one billion dollars, making a fortune for its VC
investors. Last year the Standish market research group published a report
suggesting that open source accounted for a drop of sixty billion dollars in revenue
for makes of proprietary software. Bad news for the proprietary software makers,
but good news for open source businesses and excellent news for customers.

Open source is all around you. 70% of the world's web servers are based on Apache.
The majority of front-end EDA design tools are built around Eclipse. Most of you in
this audience rely on Linux workstations for your design and verification work.

All these businesses work for two reasons.

For the user, the freedom of open source means no supplier lock in, alternative
providers of support and bug fixes, and a marketplace for new features. These are
always risks on a project, and it is this risk reduction, rather than the absence of a
license fee, that is the true value to the customer.

For the supplier, the Internet makes the marginal cost of distributing software nil. I
can afford to give away hundreds or thousands of free copies in order to attract one
paying customer.

Registered In England and Wales. Page 3 of 9
Registered Number: 6577021

There are numerous business models for making money from open source. The
MySQL approach is to have an open source personal version of the software, and a
proprietary enterprise version. Websites like SourceForge host open source projects
to drive advertising traffic and revenue. Perhaps the commonest approach is to sell
services supporting open source software. This is how IBM, Red Hat, and my own
company, Embecosm, make their money.

Fear, Uncertainty and Doubt

There are some myths which surround open source software and some pitfalls for
the unwary. Now is a good time to dispel those myths and warn of the pitfalls.

The first myth is that open source software is full of bugs. But any significant open
source project will have far more eyes looking for bugs and their fixes than a
commercial product. Apache wouldn't have obtained its dominant position in the
web server market if it was not extremely robust.

The second myth is that open source software is unsupported. But how many in
this audience can say that every bug, or feature request they have submitted to a
proprietary tool provider has been dealt with promptly and accurately? With an
open source product, your first line of support is the entire community. If they can't
help, there are plenty of companies like my own, who will sell you a support service.
And with open source you always have the final option of fixing it yourself.

The third myth is that free in the sense of “unpaid for” software is the same as open
source software. Not so. You are still at the mercy of the supplier for support and
feature provision. If they go bust, get acquired or just change their strategic
direction, you can do nothing. All your investment in learning and using that tool is
gone for nothing.

The pitfalls are all to do with licensing.

As a user, check what you are getting. A supplier may advertise a tool as being open
source and based on Eclipse. However the Eclipse license is non-viral, and all too
often you'll find the interesting parts are proprietary and secret. As a user your best
friend is the viral license. If your tool comes with the GPL you are safe.

The biggest danger for developers is when incorporating virally licensed code in
their products. Those products will themselves then become open source. That is a
good thing if it is what you intended. However it is essential that engineering
processes keep development of open source and proprietary software separate, to
avoid accidental contamination of software that is intended to remain proprietary.

The other pitfall for developers concerns choice of licenses. It is quite usual to
construct open source programs by bringing together open source components from
various sources. However not all licenses are compatible. For example you can
combine GPL and BSD licensed code, but only if the combined code is licensed
under the GPL. This is something to be planned right at the start of the project.

The Cathedral and the Bazaar

So back to the main story. Before turning to SystemC, let's look at how open source
engineering works in practice. With open source and the Internet comes a different
way of working on software projects. It is feasible to have large numbers of
programmers in multiple locations all working on the same project. But how do you
manage such a project?

Registered In England and Wales. Page 4 of 9
Registered Number: 6577021

Eric Raymond captured the two principle approaches in his 1997 essay “The
Cathedral and the Bazaar”.

The first approach suggests that complex software needs to be built like cathedrals,
carefully crafted by individual wizards or small bands of mages working in splendid
isolation, with no beta to be released before its time. The software is still released
with its source code, but between releases only a small band of developers have
access to the work in progress, giving very close control.

The second approach seems to resemble a great babbling bazaar of differing
agendas and approaches, where anyone can contribute between releases. Out of
this a coherent and stable system can emerge only by a succession of miracles.
Software is released early, and is released often.

The astonishing thing is that the second approach not only works, but is actually
much more productive than the first approach. Indeed almost all major open source
projects now operate on the “bazaar” model.

Raymond lists 19 reasons why this should be so, but only a few of them matter.
Most importantly the large number of participants mean you are engaged with large
numbers of your customers, essential for finding bugs. Secondly those large
numbers of eyeballs on the code mean that when a bug is found, someone will see
what the fix is and finally the more people that are involved, the better chance you
have of great ideas being contributed.

Which is not to say that open source projects don't need leadership. They absolutely
do, but it must be guidance of the masses, not dictatorship of the few.

What Projects are good for Open Source

Eric Raymond also tried to identify the main drivers behind successful open source
projects.

Perhaps the most important is leadership. Early on this means someone with a
software “itch” to scratch. Someone who cares passionately about doing something
in a better way. Later on, when the project is bigger, it needs leadership that can
ensure the community continues to contribute effectively.

There has to be a big enough community. Enough users, who will try the product
and give feedback so it can be debugged and improved. Enough users, that in time
some will become developers as well. In my experience once a project has ten to
fifteen active contributors it will take on a life of its own and essentially live forever.

The majority of open source projects never reach this stage. They continue as the
personal hobby of one or two individuals, but nevertheless many represent useful
contributions to the open software world.

So what are the commonest itches being scratched. There are certainly some
projects that started from scratch. They are the first of their kind, and there is no
commercial alternative. The software for Network Time Protocol is a good example in
this category.

However most commonly, the desire is to do a better version of a mature piece of
commercial software that has become bloated, expensive and is still buggy. Right at
the start GNU Emacs replaced the Unix proprietary Emacs editor and the GNU C
compiler replaced the Unix proprietary C compiler and a number of commercial

Registered In England and Wales. Page 5 of 9
Registered Number: 6577021

competitors. More recently Linux replaced Unix and Open Office (on which
incidentally this talk was prepared) is starting to replace Microsoft Windows.

SystemC and Open Source

So how does this apply to SystemC and the world of EDA?

SystemC represents a key step for the world of EDA, because of the decision to
implement a reference simulator, and to make that simulator open source. It wasn't
the first open source EDA software, but it was the first time major industry players
agreed to develop open source software.

SystemC comes with its own open source license. It is a non-viral license,
essentially of the “do what you like, just so long as you never sue me” variety. That
has allowed SystemC to be widely incorporated into commercial offerings from all
the major EDA players, none of whom have open sourced their derivatives.

The SystemC license has one quirk. It requires all users to agree to help defend the
SystemC trademark. In that sense it is not an open source license – there is a cost
to adopting the software. That is why SystemC is not found in any major Linux
distribution. The failure to use a standard license was a big mistake.

But the big failure of the SystemC project was to build as a “Cathedral” and not a
“Bazaar”. You can only contribute to SystemC if you are a paid member of the Open
SystemC Initiative. Releases are infrequent and bugs take months or years before
they are fixed. Indeed it it hard for ordinary users to even report bugs. As a
consequence the latest version of the simulator will not build on the modern
versions of Linux or Windows.

Open Source EDA Tools

SystemC is not the only open source EDA tool. Many open source versions of front
end tools are available. Rich Porter will talk in detail about some of these later, but
for now here are some examples.

There are Icarus Verilog and GHDL, open source event driven simulators. If you
want more speed there is Verilator which will convert Verilog into a fast cycle
accurate SystemC model. For wave trace analysis there is GTKWave.

In fact there is even a GNU EDA project providing an umbrella for a wide range of
free and open source EDA tools, covering both digital and analog design.

Perhaps most significant is the Fedora Electronics Lab, part of the latest release of
Fedora Linux. That includes not just front-end tools, but synthesis and layout tools
and cell libraries for ASIC development. In fact the only thing missing is SystemC,
because of the failure to resolve the licensing problem I mentioned earlier.

Open Source Hardware

What about open source for hardware? There is plenty out there. The OpenCores
website hosts dozens of projects and has over forty thousand users. But
commercially open source hardware is around 15 years behind open source
software.

One of the key issues is licensing. Unlike software, hardware is covered by patent
law and the law of contract, not copyright and licenses. This remains a legal

Registered In England and Wales. Page 6 of 9
Registered Number: 6577021

minefield for the commercial development of open source hardware, but an
interesting one for lawyers.

Indeed so interesting that the Journal of Information Law and Technology is
running a special issue on this subject. This is an open access journal, and if any of
you would like to contribute, then I should be very happy to speak with you
afterwards.

The Future of Open Source in EDA

Earlier I spoke of the sort of project that is well suited to open source.
Replacements for mature products that are bloated, costly and still have bugs. That
could well describe the state of many EDA front end tools and technologies. So
perhaps it is not surprising that we see the emergence of tools like Icarus Verilog,
GHDL, Verilator and GTKWave.

But the problem is that all these tools are still in the category of “personal itch
being scratched”. Verilator is largely the work of Wilson Snyder, with just a handful
of other occasional contributors. Icarus Verilog is almost all written by just two
engineers. GTKWave has one main contributor. None of them have reached that
critical mass of 10-15 active contributors which means the project gains a life of its
own.

That reflects the small community in which EDA operates. There are perhaps sixty
thousand chip designers out there, compared with the millions of software
engineers from which projects like GNU and Linux draw their contributors.

Maybe major chip design houses should look at their software counterparts, and
consider funding development of open source tools. Just think of the difference to
Icarus Verilog and GHDL if each major design house contributed just one engineer.
Some of you in this audience are the managers who could make this happen. Think
of the potential savings in both license fee and risk if this were successful.

The Software Factor

There is another factor driving the future of EDA front-end tools. That is the
balance of power in engineering teams. 15 years ago, the cost of developing a new
chip was completely dominated by the hardware design team and its tools. Since we
reached 90 nanometer, that balance has been reversed. It is not unknown for a
hardware design team of 10 engineers to be complemented by a software teams of
hundreds. It is now the software engineering manager who is calling the budget
shots.

These are managers who are used to Eclipse and Linux and GNU Tool Chains. They
don't pay license fees for tools, because the best ones are free. They do pay modest
fees for support of those tools. Now they are starting to look at their hardware
colleagues and asking why they are spending so much.

These engineers are also becoming customers for EDA technology. Why use a
general ISS, when I could have a proper model of an entire SoC to work with. But if
I have 500 engineers, I am not going to pay EDA prices. I'll use an open source tool
instead. My company, Embecosm, is already doing that with our clients, and as you
will hear later this afternoon, we are not the only company in this business.

Registered In England and Wales. Page 7 of 9
Registered Number: 6577021

So open source is coming to EDA and hardware design, whether we like it or not.
We can either ignore it while our competitors move ahead, or we can embrace it and
be early beneficiaries of all the advantages I have discussed earlier.

The Future for SystemC

This the end of my story so far. SystemC represents EDA's first big corporate
attempt in the Open Source world. But what of its future? Will it be, as has been
promised for so long, the salvation of front-end chip design.

Well, not as it stands. SystemC has four key problems.

The first is purely technical. SystemC introduces some radical concepts. It was a
mistake to try to implement if with the syntactic sugar of C++, a language that is
semantically incompatible. Software engineers don't mind good new languages.
They'll program in C++ one day, C the next and then on to Java. And in between
they'll be writing scripts in Perl, Ruby, Python and TCL. SystemC missed the
opportunity to be an elegant new language for digital discrete event simulation.

The second is that all the SystemC tools are intended for software engineers, but
are designed by hardware engineers. I have seen some wonderful virtual platform
tools from gifted engineers at great EDA companies. They incorporate wonderful
tools for debugging the software. But they are for debugging software in the way
that hardware engineers think it should be done. Not one uses the GNU debugger
running under Eclipse. Yet that is the work horse of every system engineer, and
should have been the first tool provided.

The third problem is that SystemC messed up as an open source project. By using
the “cathedral approach” with a small group of industry insiders the project has
stagnated and fallen behind the times. As we have seen, there are few enough
engineers in EDA as it is. If only SystemC had acted as a “bazaar”, drawing on all
the talent available, engaging with all the users, and releasing early and often.

But the final problem is the critical one. The software engineers are coming. They
now control the budgets. They are by far the biggest potential customer base for
SystemC. The biggest SystemC companies turn over a few tens of millions of
dollars. Embedded companies like Wind River and Green Hills are 10 times bigger,
and far more experienced with managing open source products.

But SystemC has not been a failure. The project and the name may not survive, but
the ideas will. There will be a software technology for efficient discrete event
simulation of digital hardware, and it will be open source. And future historians will
be able to point back to SystemC and its open source reference simulator as the
point when it all began.

Companies like Code Sourcery, Red Hat and Embecosm know how to get the best
out of Open Source.

Expect to see organizations like this pick up SystemC, chew it up and spit out a
completely new open source technology that will solve the problems the users.

SystemC was a brave experiment, it established many new ideas. But like so many
brave pioneers, it will not ultimately be the winner.

Registered In England and Wales. Page 8 of 9
Registered Number: 6577021

About the Author

Dr Jeremy Bennett is Chief Executive of Embecosm Limited (www.embecosm.com).
We want our users to develop embedded software seamlessly, using standard open
source tools, whether the target is an early model of the architecture or final silicon.

Embecosm's services include:

• Comprehensive GNU tool chain porting and optimization for embedded
processors.

• Standards based cycle accurate and transaction level hardware modeling,
including OSCI SystemC TLM 2.0 compliance.

• Seamless, unified SoC firmware development and debugging from initial model
to final silicon.

• Support, consultancy, tutorials and training throughout the product life cycle

Jeremy Bennett is an active contributor to the OpenCores project
(www.opencores.org). Contact him at jeremy.bennett@embecosm.com.

This talk was given on 24 September 2009 at the National Microelectronics Institute
meeting on Electronic System Level Design in Bristol, UK.

References

The GNU Manifesto, Richard Stallman, 1983. Free Software Foundation
(www.gnu.org/gnu/manifesto.html).

The Free Software Foundation. www.fsf.org.

The Open Software Initiative. www.opensource.org.

The Open Software Definition. www.opensource.org/docs/osd.

The Cathedral and the Bazaar, Eric S Raymond, 1999 (first presented May 1997),
O'Reilly, ISBN 1-56592-724-9. www.catb.org/~esr/writings/cathedral-
bazaar/cathedral-bazaar.

Journal of Information Law and Technology. Editor Prof Philip Leith, Queens
University, Belfast. www2.warwick.ac.uk/fac/soc/law/elj/jilt.

Registered In England and Wales. Page 9 of 9
Registered Number: 6577021

http://www.embecosm.com/
mailto:jeremy.bennett@embecosm.com
http://www.opencores.org/

