Looking to the Future for DFT and Analogue Test

National Microelectronic Institute

Peter Sarson CEng MIET CMgr MCM
Full Service Foundry

16th April 2015
Automotive Test
Existing Challenges

Historically Low Volume, High Reliability

More extensive and exhaustive testing

• Very long test times
• Limited resources needed extensively around the device
 – Potentially compromising loadboard design
• Long time to market

Expensive RMA process – 2 man years at ams AG

• Extensive failures analysis
• 8D reports
Consumer Test
Existing Challenges

High Volume

Bare bones testing, system tests

• Short test times
• Complicated multi-site boards, high parallelism
 – Long down times due to setup issues during production
• Fast time to market

Non-existent RMA flow

• Generally only receive RMA during cost negotiations
Automotive test
Future Challenges

A move to higher supply voltages, more complex test boards

- Fewer resources available, and lower accuracy
- Requires more resource sharing

Higher volume

An even greater focus on product quality and reliability

- As devices get larger and more complex, more defects missed by test
Consumer
Future Challenges

Our current high-volume consumer customers requesting more automotive-style product qualifications

More precision
 • Less chance for parallelism, which increases cost

More RMA received – More than 2 man years?

Even higher volume
 • Need more parallelism
Automotive and Consumer
Future Challenges

• Automotive and consumer requirements will merge and a single standard will be adopted for all semiconductor segments

• Larger ASICS, smaller geometries, more defects per sq. mm
 – More focus on defect-based testing, since spec testing simply doesn’t find all defects.

• We will need more design tools to calculate analogue test coverage to show where test coverage is missing
Automotive and Consumer
Future Challenges

• We need to focus more on automated analogue DFT to allow muxing signals on-chip, to single points on loadboards
 – To aid test board reliability, device debug, automated test generation
 – Access to nodes we simply don’t have access to today
Measurement System Analysis V4 spec change

• Automotive industry has seen a requirement to change the MSA spec due to very tight requirements becoming unrealistic
 – Means? No need for such accuracies and test repeatability to pass requirements → use \(Cp(\text{observed}) \) rather than \(Cp \)
 – Possibly built-in test measurement accuracy can be relaxed

• Applicable to Consumer parts for high volumes, not just Automotive!
New Release Criteria
IEEE 1687 Standard

- A new approach to scan access based on IEEE 1149.1 and 1500
 - Allows faster, simpler access to IP blocks (“instruments”) via scan
- Intended to also allow test access to the IP blocks in the field
- Tools currently available from some EDA vendors
Analogue Defect Simulation

- No commercially available tools
- Published papers proposed many different techniques over last 30 years, with no really usable result
- With larger ASICS and more defects in the analogue circuitry, it becomes much more critical to finding reliability-related defects
- Analogue Defect Simulation shows where coverage is lacking and hence where more test access is needed

Ad hoc working group

- A group of motivated people from industry working together to find common ground in mixed-signal DFT and test generation
- Work on-going to develop standard way to describe Analogue Test Bus and ADC/DAC serial access using 1687 syntax, to allow automation
- Focused on Defect-Oriented Test (DOT), rather than spec testing
 - This simplifies the problem for an Analogue BIST approach

Thank you

Please visit our website www.ams.com