
P.G. Drennan – May 13, 2009 - Slide 1

Design for Variability in Analog / 
Mixed-Signal  Circuits

Patrick G. Drennan, Ph.D. 
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Outline

• Design Loss / Opportunity Cost

• Problem with Global Process Corners

• True Corners

• Epistemic Uncertainty

• Proximity Effects

• Conclusions
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Process Variation causes Design Loss
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What causes Design Loss?

Yield

Area

Power

Over Design
Ex: Excessive Guard-band to Spec

• Meets performance specs

• Consumes too much power

• Wastes area – higher die cost

• Product not competitive

Yield

Area

Power

Under Design
Ex: Insufficient Margin to Spec

• Fails performance specs

• Yield loss – higher die cost

• Causes mask re-spins

• Slow ramp to production
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Right Design

Min AreaMin PowerMax Yield

• Improve performance

• Reduce power

• Reduce area

• Competitive product on time

• Avoid circuit failure in silicon

• Improve yield

• Fast ramp to production

Solido: Eliminate Design Loss
Right Design, Fast
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Traditional Statistical Variation Design
Design to Global Process Corners, Verify with Monte Carlo

Monte Carlo

Layout

Schematic Capture

Nominal Sizing

Global Process Corners
(ff, ss, fs, sf, tt, …)

Environmental 
Combinations

Fab

Many iterations

due to inadequate 

statistical coverage 

during design sizing
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Problems with Global Process Corners

• Do not include local variation

– Local variation is geometry dependent

– Devices must “wiggle” independently

• Do not include environmental conditions

– Supply voltage

– Temperature

• Are derived for digital application

– Geometries

• Digital uses min-L, ~min-W

• A/MS and RF design spans the entire geometry space

– Bias

• digital cares about Ion / Ioff

• A/MS and RF care about C’s and g’s

• Voltage driven definition but current driven application
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Model files include Process Variation Effects

designer

Process variation data is already available in models
BUT data is typically not utilized fully

Digital corners (TT,FF,SS,FS,SF)

≤ 180 nm 

Statistical variation parameters:
Global variation (e.g. dvth_g, du0_g)
Local variation (e.g. dvth_l, du0_l)

≤ 90 nm
Well Proximity Effect Parameters
(e.g. sca, scb, scc)

≤ 65 nm
Foundry-Defined Stress Parameters

Foundry
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8 Transistor Amplifier Example
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Global Process Corners

Statistical results

= process corners
(best, worst case, etc.)
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Full Statistical Simulation versus
Global Process Corners

Statistical results

= process corners
(best, worst case, etc.)

= All sources of 

statistical variation
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True Corners

Statistical results

= process corners
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= All sources of 
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• Local variation

• Global variation

• Environmental parameters

• Can not derive analytic dependency

• Must be numerically evaluated
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True Corners
Monte Carlo accuracy in Digital Corner time
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Speed

True Corners
• Design-specific corners

• Global variation
• Local variation (mismatch)

• Environmental variation

True Corners
• Design-specific corners

• Global variation
• Local variation (mismatch)

• Environmental variation

Digital CornersDigital Corners

Monte CarloMonte Carlo

Better 

representation

of the statistical

& environmental

distribution
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Variation Designer & 
Statistical Apps

• Analyze design quickly

• Identify design weaknesses
• Fix to achieve Right Design

Monte Carlo

Layout

Schematic Capture

Nominal Sizing

Global Process Corners
(ff, ss, fs, sf, tt, …)

Environmental 
Combinations

Fab

Layout

Schematic Capture

Nominal Sizing

Fab

Accurate

Statistical Variation Design Evolution             
Digital Corner Flow                                   True Corner Flow
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True Corner-driven design:
Anatomy of a True Corner

Local variations
modify_I2_I5_MN26_dvton alter sub=I2.I5.MN26 

param=dvton value=1.11158768808

modify_I2_I5_MN26_xbon alter sub=I2.I5.MN26 

param=xbon value=-0.328789341698

modify_I2_I5_MN25_dvton alter sub=I2.I5.MN25 

param=dvton value=0.500116216138

modify_I2_I5_MN25_xbon alter sub=I2.I5.MN25 

param=xbon value=-0.726111824424

modify_I2_I5_MN24_dvton alter sub=I2.I5.MN24 

param=dvton value=2.66805858619

...

Global variations
global_parameters_alter altergroup{

parameters 

+ devtoxn=-0.894507450271

+ slfacnan=-0.343906959091

+ slfacnap=0.163598578623

+ swfacnan=1.44464459729

+ cjunvarp=-0.0600889154501

+ devdelwn=1.47641587117

+ rshpo=-0.0218030379434

+ swfacnap=1.24062694315

+ rshno=0.619034146098

+ devtoxp=0.237537397475

...

Environmental corner settings
modify_ibias alter param=ibias value=1.05e-05

modify_vdda alter param=vdda value=1.58

modify_vcm alter param=vcm value=0.81

modify_Temperature alter param=temp 

value=45.0
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Designing With True Corners
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Epistemic Uncertainty, Explained

“... there are known knowns; there are 
things we know we know. We also know 
there are known unknowns; that is to say 
we know there are some things we do 
not know. But there are also unknown 
unknowns - the ones we don't know we 
don't know.”

Epistemic Uncertainty ���� know your unknowns

Proximity Effects: The MOSFET electrical performance (Vt, µµµµo, etc.) 
is significantly affected by surrounding features 

in layout

Proximity Effects: The MOSFET electrical performance (Vt, µµµµo, etc.) 
is significantly affected by surrounding features 

in layout
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Schematic

SPICE sim

Layout

You need to know 

proximity effects 

values at schematic

You need to know 

proximity effects 

values at schematic

But you do not know 

the proximity values 

until layout

But you do not know 

the proximity values 

until layout

The Proximity Effect Problem

Epistemic

Uncertainty
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Well Proximity Effect (WPE)

STISTI STI STI

Vt
1

> Vt
2

< Vt
3

STISTI STI STI

Photoresist Photoresist
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Proximity Effect Problem
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The Current Solution:
Expensive Loop

Does

circuit work
?

RCE

(extract proximity effects 
from layout)

No

Yes

Schematic

Post-layout 
SPICE sim

Pre-layout 
SPICE sim

Layout
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Feasibility for a Cascode Current Mirror

M0

M2

M1

M3
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Current Mirror Outcomes Based on Layout

Example #2

S D S D

D S D S

Example #3

S D

S D

D S

D S
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SolidoPROX
Proximity variation design 

tool
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Design Efficiency

Save Design Time While Saving Area
90nm and Smaller
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Conclusions

• True Corners give a better representation of distribution

– Local variation

– Global variation

– Environmental conditions

• True Corner design preserves the familiar corner driven flow

• Epistemic uncertainty allows you to design around 
undetermined problems

• One can design for proximity effects before layout


